a
当前位置: 课程信息 >  自动化

| 自动化

[2017-12-26]

《离散数学》课程教学大纲

课程名称:  离散数学(1

课程代码:  MA115

学 分 / 学 时: 2 / 32

适用专业:  学院概况各专业

先修课程:

后续课程: 数据结构、算法与复杂性等

开课单位:  学院概况

一、课程性质和教学目标

课程性质:此课程是针对学院概况各专业的本科基础课程,也可作为自然科学类通识课程。

教学目标:本课程以研究离散量的结构和相互间的关系为主要目标,旨在介绍离散数学的各个分支的基本概念、基本理论和基本方法。使学生学会从数学与自然科学的角度对解决途径进行分析。(毕业要求2.3

二、课程教学内容及学时分配

教学内容

学时

课堂

教学

作业及要求

自学及要求

命题演算
命题,真值联结词,合式公式,复合命题的表示和翻译;   指派与赋值,永真性与可满足性;
联结词的归纳,范式;   命题演算推理系统

10

10

每次课堂教学后有课外作业,有集中问题进行讲解

范式的应用和逻辑电路设计

一阶谓词演算
个体,谓词,函词量词,自由变元与约束变元,合式公式,谓词公式与翻译;   一阶谓词演算公式的永真性与可满足性,前束范式;   一阶谓词演算推理系统

8

8

选择数学分析中的若干命题符号化,并求出对应的否定命题

图论
图的基本概念、性质,
道路与回路、欧拉图、哈密尔顿图,
树及其应用
平面图、对偶图、点着色

16

16

三、教学方法

以课堂教学为主,结合自学、作业。

课堂教学主要讲解离散量的结构和相互间的关系,旨在介绍离散数学的各个分支的基本概念、基本理论和基本方法,培养和训练学生的概括抽象能力、逻辑思维能力、归纳构造能力,为大电类各专业理论的讲授作好最必要的准备。离散数学本身虽然能自成系统,相对独立,但是数学分析课程的严谨分析与训练,非常有助于本课程的理解。离散数学又是一门工具性的课程,它与“数字电路”,“算法与数据结构”,“编译原理”,“操作系统”,“数据库”等都有紧密的联系,对于这些后续课程,离散数学会成为有力的工具。

四、考核及成绩评定方式

最终成绩由平时作业、课堂表现、结业考试成绩组合而成。各部分所占比例如下:

平时作业和课堂表现:30%。考试:70%

五、教材及参考书目

教材:

[1]  董晓蕾,曹珍富. 离散数学. 北京:机械工业出版社,2009.

参考书目:

[1]  石纯一. 数理逻辑与集合论. 北京:清华大学出版社,2000.

[2]  戴一奇. 图论与代数结构. 北京:清华大学出版社,2000.

[3]  沈恩绍. 集论与逻辑——面向计算机科学. 北京:科学出版社,2003.

[4]  ()邦迪(J.A.Bondy), ()默蒂(U.S.R.Murty). 图论及其应用. 北京:科学出版社,1984.

[5]  Kenneth A.Ross, Discrete Mathematics, Pearson Prentice Hall,2003.

[6]  Jerome Malitz, Introduction to Mathematic Logic, Springer-Verlag.1999

[7]  Anil Nerode, Logic for Applications, Springer-Verlag,1979:11-1.

[8]  A Mathematical Introduction to Logic, Herbert B. Enderton, Academic press.

 

课程组教师名单:曹珍富

大纲执笔:曹珍富

访问数量:
 a
Baidu
map